Conflicting mitochondrial and nuclear paraphyly in small-sized West African house bats (Vespertilionidae)

Peter Vallo, Petr Benda, Jaroslav Červený & Petr Koubek

Submitted: 27 March 2012 Accepted: 12 July 2012 doi:10.1111/j.1463-6409.2012.00563.x Vallo, P., Benda, P., Červený, J. & Koubek, P. (2012). Conflicting mitochondrial and nuclear paraphyly in small-sized West African house bats (Vespertilionidae). —*Zoologica Scripta*, 42, 1–12.

Hybridization between species may result in introgression of mitochondrial DNA from one species to another. Phylogenetic inference, therefore, may not recover true evolutionary relationships. In bats, there are only a few reported cases of introgressive hybridization. House bats are a genus with obscure phylogeny and taxonomy, caused mainly by morphological similarity. We undertook a detailed analysis of small-sized West African house bats (Scotophilus), tentatively identified as S. nigritellus, to clarify relationships between two sympatric colour forms. These forms were recovered in paraphyletic position to each other in both mitochondrial and nuclear phylogenies, signifying that they are two distinct species. While the yellow-bellied form could be assigned beyond doubt to S. nigritellus s. str., the white-bellied form may be an as yet undescribed species. Moreover, the white-bellied form clustered as a sister mitochondrial lineage to another species, Scotophilus leucogaster. These sister lineages differed by only 2.6-2.8% sequence divergence, which lies within the intraspecific range for this genus. Two nuclear markers, however, contradicted the sister relationship, showing them instead to be distantly related. The apparent conflict between the mitochondrial and nuclear signals suggests that past hybridization may have occurred between these morphologically distinct species.

Corresponding author: Peter Vallo, Institute of Vertebrate Biology AS CR, v.v.i., Květná 8, 603 65 Brno, Czech Republic. E-mail: vallo@ivb.cz

Petr Benda, Department of Zoology, National Museum (Natural History), Václavské nám. 68, 115 79 Praba 1, Czech Republic & Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Praba 2, Czech Republic. E-mail: petr_benda@nm.cz

Jaroslav Červený, Department of Forest Protection and Game Management, Institute of Vertebrate Biology AS CR, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamýcká 129, 165 21 Praha 6, Czech Republic. E-mail: jardaryscerveny@seznam.cz

Petr Koubek, Department of Forest Protection and Game Management, Institute of Vertebrate Biology AS CR, v.v.i., Květná 8, 603 65 Brno, Czech Republic. E-mail: koubek@ivb.cz

Introduction

Over recent years, phylogenetic inference based on mitochondrial DNA (mtDNA) has become a standard approach in taxonomic evaluation of animal species (Avise 2000; Baker & Bradley 2006; Galtier *et al.* 2009). Use of mtDNA has become firmly established because of a number of favourable characteristics, including maternal inheritance, haploid status, lack of recombination, high mutation rate and widely available protocols (Moritz *et al.* 1987; Ballard & Whitlock 2004; Galtier *et al.* 2009). Although mtDNA-based phylogenies are considered robust, they may also reflect other evolutionary processes that can obscure species phylogenies, for example, introgressive hybridization (Moore 1995; Nichols 2001; Galtier *et al.* 2009). While introgressive hybridization has been shown to be a relatively common phenomenon in natural populations (Berthier *et al.* 2006; McGuire *et al.* 2007; Currat *et al.* 2008), its occurrence and direction is dependent on barriers to interspecific reproduction (Wirtz 1999; Avise 2000). Despite its confounding effect on species phylogeny, revelation of introgression within a multigene assay plays an important role in understanding the evolutionary history and delimitation of species (Funk & Omland 2003; Petit & Excoffier 2009).

Few cases of mtDNA introgression have been documented in bats. It has been observed, however, both in sister species, for example, large European mouse-eared bats *Myotis myotis* (Borkhausen, 1797) and *M. blythii* (Tomes, 1857) (Berthier et al. 2006), and in distantly related congeneric species, for example, European serotine bats Eptesicus nilssonii (Keyserling & Blasius, 1839) and E. serotinus (Schreber, 1774) (Mayer & von Helversen 2001; Artyushin et al. 2009). In both cases, mtDNA introgression was explained as a result of expansion of one of the species into range of another following a change of environmental conditions. Recently, hybridization has even been hypothesized to have occurred between different genera, that is, the Central African fruit bats Micropteropus pusillus (Peters, 1867) and Epomophorus gambianus (Ogilby, 1835) (Nesi et al. 2011). MtDNA introgression, as revealed in European bats, has yet to be described in bats of sub-Saharan Africa. However, some features of bats, such as powered flight, which is a unique means of crossing geographical barriers impenetrable to terrestrial animals, and roosting in mixed colonies, which enables close contact between species, allow reasonable presumption of presence of this phenomenon also in this area.

The genus Scotophilus Leach, 1821 (house bats; Vespertilionidae), is a common faunal element of bat communities in the Old World tropics (Robbins et al. 1985; Simmons 2005; Horáček et al. 2006). These bats represent a morphologically uniform group with variation predominantly in body size and pelage colouration, differing from other vespertilionids mainly through their derived dental and cranial character states (Menu 1987; Horáček et al. 2006). Because of similarity in external appearance, taxonomic and phylogenetic structure of the genus has traditionally been confused (Hayman & Hill 1971; Robbins et al. 1985; Koopman 1994; Simmons 2005; Jacobs et al. 2006). Eleven species are currently recognized as occurring in sub-Saharan Africa, including two endemic Madagascan species (Robbins et al. 1985; Goodman et al. 2005, 2006; Simmons 2005; Trujillo et al. 2009; Vallo et al. 2011). Six species are reported from West Africa. Two of these, S. nux (Thomas, 1904) and S. nucella Robbins, 1973, are limited in their distribution to equatorial forest regions, and the others are distributed throughout the savannah zone. Scotophilus nigrita (Schreber, 1774), the largest representative of the genus, can be unambiguously identified by its size [forearm length (LAt) over 70 mm]. There are two other large forms, the yellow-bellied S. dinganii (Smith, 1833) (LAt ca. 50-58 mm) and the white-bellied Scotophilus leucogaster (Cretzschmar, 1830) (LAt ca. 48-54 mm), and a small form (LAt ca. 42-48 mm) that has traditionally been included into S. viridis (Peters, 1852) based on morphology (Robbins et al. 1985) but has recently been confirmed as a separate species, S. nigritellus de Winton, 1899, based on DNA analysis (Trujillo et al. 2009).

Our recent (2004-2008) inventory of bat communities of the Niokolo Koba National Park (NKNP) in southeastern Senegal resulted in numerous catches of house bats. Small-sized individuals were tentatively identified as S. nigritellus based on currently accepted taxonomy (Simmons 2005; Trujillo et al. 2009). Several individuals, however, exhibited an apparent inconsistency in pelage colouration, that is, while the majority of bats had yellowish-brown backs and yellow venters, which agrees with the description of S. nigritellus by de Winton (1899), aberrant bats had grevish-brown dorsal and white ventral colouration, some having a reddish-brown spot in addition that was probably attributable to gland excretion. These differences were originally considered as intraspecific variation as Afro-tropical bats are known to vary in this trait and recent studies (Goodman et al. 2005; Jacobs et al. 2006) have considered pelage colouration unreliable, particularly in house bats.

In this study, we examine genetic variation in smallsized house bats collected in Senegal and search for potentially significant differences between the aberrant whitebellied and the prevailing vellow-bellied individuals. We use sequences of the mitochondrial gene for cytochrome b(cytb), a traditional choice in molecular taxonomy (Baker & Bradley 2006), for inference of a phylogenetic relationship between the two forms within the broader spectrum of African congeneric species. To cover the possible confounding effect of mtDNA on species phylogeny, we analyse variation in fragments of two nuclear genes, the paternally inherited gene for zinc finger protein on the Y chromosome (zfy), and the bi-parentally inherited gene coding for the intron 7 of beta fibrinogen (fgb7). Amplified portions of both genes include intron regions, which are considered reasonable counterparts of mtDNA for phylogenetic inference in closely related species (Cathey et al. 1998; Prychitko & Moore 2000; Matthee et al. 2007). These nuclear genes have been successfully used in previous phylogenetic studies on bats (Trujillo et al. 2009; Nesi et al. 2011). We further assess morphometric variation using external and cranial dimensions and link it to genetic variation. Based on a combination of genetic and morphological evidence, we address the taxonomic status of the small-sized Scotophilus of West Africa.

Material and methods

Sampling

Most of the bats included in this study were captured between 2004 and 2008 in the NKNP in south-eastern Senegal (Fig. 1, Table 1). The NKNP is the largest natural protected area in Senegal and covers over 9130 km² of well-preserved Sudanese and Sudano-Guinean savannah belt, which is characterized by woodlands and a mosaic of grassland and wooded savannah (Madsen & Sambou 1998; Arbonnier 2002). Voucher specimens were fixed in ethanol

Fig. 1 Map of West Africa with localities of origin of specimens used in the study.

and deposited at the Institute of Vertebrate Biology of the Academy of Sciences of the Czech Republic, v. v. i. (IVB). The Senegalese specimens identified as *S. nigritellus* (N = 20) were compared with a set of syntopic *S. leucogaster* captured during the same fieldwork in the NKNP (N = 8) and additional specimens of both species from the collection of the National Museum in Prague, Czech Republic (NMP): *S. leucogaster* from Mauritania (N = 1) and *S. nigritellus* from Benin and Mauritania (N = 2).

For mtDNA phylogenetic comparison, we included additional GenBank sequences of African *Scotophilus* by Trujillo *et al.* (2009): *S. nux* (EU750933), *S. nigritellus* from Ghana (EU750971, EU750974), *S. leucogaster* from Ghana (EU750940), *S.* aff. *dinganii* from Ghana and westernmost Kenya (EU750977, EU750979, EU750982),

Table 1 List of newly processed West African Scotophilus specimens and conspecific samples published in GenBank used in the study

Sample	Scotophilus form	Sex	Country	Locality	cytb	Acc. #	zfy	Acc. #	fgb7	Acc. #	
Sen0524	YB nigritellus	F	Senegal	Dalaba	Sen1	JX281737	_	_	_	_	
Sen1236	YB nigritellus	F	Senegal	Simenti	Sen2	JX281738	JX281738 –		YB1, YB2	JX281755, JX281756	
Sen1264	YB nigritellus	F	Senegal	Niokolo	Sen3	JX281739	-	-	-	-	
Sen1265	YB nigritellus	F	Senegal	Niokolo	Sen3	-	-	-	-	-	
Sen1333	YB nigritellus	F	Senegal	Mako	Sen4	JX281740	-	-	-	-	
Sen1685	YB nigritellus	М	Senegal	Niokolo	Sen5	JX281741	zfyYB	JX281750	YB1	JX281755	
Sen1691	YB nigritellus	М	Senegal	Niokolo	Sen5	-	-	-	YB1, YB3	JX281755, JX281757	
Sen1759	YB nigritellus	М	Senegal	Assirik	Sen6	JX281742	zfyYB	-	YB4, YB5	JX281758, JX281759	
Sen1760	YB nigritellus	М	Senegal	Assirik	Sen1	-	zfyYB	-	-	-	
Sen1763	YB nigritellus	F	Senegal	Assirik	Sen6			-	-	_	
pb3530	YB nigritellus	F	Benin	11-km NW of Alafiarou	Ben1	JX281743	-	-	-	-	
-	nigritellus	-	Ghana	Accra region	Gha1	EU751071	-	EU751009	-	-	
-	nigritellus	_	Ghana	Accra region	Gha2	EU751074	-	-	-	-	
Sen0382	WB nigritellus	F	Senegal	Simenti	Sen7	JX281735	-	-	-	-	
Sen1148	WB nigritellus	М	Senegal	Simenti	Sen7	-	zfyWB	JX281749	WB1	JX281751	
Sen1208	WB nigritellus	М	Senegal	Simenti	Sen7	-	zfyWB	-	-	-	
Sen1231	WB nigritellus	F	Senegal	Simenti	Sen7	-	-	-	-	-	
Sen1581	WB nigritellus	М	Senegal	Lengue Kountou	Sen7	-	zfyWB	-	-	-	
Sen1582	WB nigritellus	М	Senegal	Lengue Kountou	Sen7	-	zfyWB	-	WB1	-	
Sen1584	WB nigritellus	М	Senegal	Lengue Kountou	Sen7	-	zfyWB	-	WB1	-	
Sen1633	WB nigritellus	F	Senegal	Gue du Damantan	Sen7	-	-	-	-	-	
Sen1634	WB nigritellus	F	Senegal	Gue du Damantan	Sen7	-	-	-	WB1	-	
Sen1635	WB nigritellus	F	Senegal	Gue du Damantan	Sen7	-	-	-	-	-	
pb4787	WB nigritellus	F	Mauritania	Kaedi	Mau1	JX281736	-	-	WB1	-	
Sen0523	leucogaster	F	Senegal	Dalaba	Sen8	JX281744	-	-	-	-	
Sen1232	leucogaster	М	Senegal	Simenti	Sen8	-	zfySL	_*	SL1, SL2	JX281752, JX281753	
Sen1271	leucogaster	М	Senegal	Niokolo	Sen9	JX281745	-	-	-	-	
Sen1293	leucogaster	F	Senegal	Mako	Sen8	-	-	-	-	-	
Sen1579	leucogaster	М	Senegal	Lengue Kountou	Sen10	JX281746	zfySL	-	-	-	
Sen1630	leucogaster	М	Senegal	Gue du Damantan	Sen9	-	zfySL	-	SL2, SL3	JX281753, JX281754	
Sen1632	leucogaster	М	Senegal	Gue du Damantan	Sen9	-	zfySL	-	SL2, SL3	-	
Sen1758	leucogaster	F	Senegal	Assirik	Sen9	-	-	-	-	-	
pb4782	leucogaster	М	Mauritania	Kaedi	Mau2	JX281747	zfySL	_	SL2, SL3	-	
pb3526	leucogaster	М	Benin	10-km W of Parakou	Ben2	JX281748	_	-	-	-	
-	leucogaster	-	Ghana	Yendi	Gha3	EU750940	-	EU751018*	-	-	

* Zfy sequence of Scotophilus leucogaster in this study was identical to the published sequences EU751018 and EU751019 on the 844 bp analysed. Acc. # – GenBank accession number.

S. colias (Thomas, 1904) from Ethiopia and Kenya (EU750954, EU750960, EU750960) – see Vallo *et al.* (2011) for this taxonomic assignation – and *S. dinganii* s. str. (EU750995, EU750997) from South Africa. A sequence of the Asian congeneric species *S. kublii* Leach, 1821 (EU750915), which has been shown to be the basal taxon of the genus (Trujillo *et al.* 2009), was used as an outgroup for rooting the phylogenetic trees.

For *zfy* comparison, we included the following additional *Scotophilus* sequences by Trujillo *et al.* (2009): *S. dinganii* morphospecies from Eastern, Western and Southern Africa (EU751002–EU751010), *S. leucogaster* (EU751018, EU751019), *S. nux* (EU751017) and the outgroup taxon *S. kublii* (EU751015). The only published *zfy* sequence of *S. nigritellus* was identical with sequence EU751009 of *S.* aff. *dinganii* from Ghana.

DNA processing and phylogenetic analysis

Total genomic DNA was extracted from ethanol-preserved tissue samples (spleen, muscle or patagium) using Dneasy Tissue Kit (Qiagen, Hamburg, Germany) or JetQuick Spin Tissue Kit (Genomed, Löhne, Germany) according to the manufacturers' protocols. The complete cytb mitochondrial gene was amplified via polymerase chain reaction (PCR) using primers F1 (modified; 5'-CCACGACC AATGACAYGAAAA-3') and R1 (5'-CCTTTTCTGGTT TACAAGACCAG-3') by Sakai et al. (2003) in 25-µL reaction volume consisting of 12.5-µL Combi PPP Master Mix (Top-Bio, Prague, Czech Republic), 200 µM of each primer, and 1.5-3 µL of extracted DNA. Alternatively, several samples were amplified using a PCR cocktail containing 0.8 mM dNTP (Fermentas) and 1U of HotMaster DNA polymerase and corresponding 10× buffer (Eppendorf, Germany). Initial denaturation of the PCR at 94 °C for 3 min was followed by 35 cycles of denaturation for 40 s at 94 °C, annealing for 40 s at 50 °C, and extension for 90 s at 65 °C, with final extension at 65 °C for 5 min. Partial sequences of zfy were amplified using primers 33X5YF (5'-GCAGCAGCTTATGGTAAGTGA-3') (Trujillo et al. 2009) and LGL331 (5'-GCAAATCATGCAAGGATA GAC-3') (Cathey et al. 1998), and a PCR protocol similar to the protocol for cytb, differing in an annealing temperature of 58 °C and extension time of 150 s. Partial sequences of fgb7 were amplified using primers Bfib1 (5'-ATTCACAACGGCATGTTCTTCAG-3') and Bfib2 (5'-AANGKCCACCCCAGTAGTATCTG-3') by Seddon et al. (2001) and a PCR protocol differing from the cyth protocol in an annealing temperature of 57 °C. The resulting PCR products were purified using JetQuick PCR Purification Kit (Genomed) or the QiaQuick PCR Purification Kit (Qiagen), and sequenced commercially (Macrogen, Seoul, Korea) using BigDye Terminator sequencing chemistry (Applied Biosystems, Foster City, CA, USA) on an ABI 3730xl sequencer in both directions for *cytb*, and in forward direction for *zfy* and *fgb7*, using the same primers as for PCR amplification. Sequences were assembled and edited in Sequencher 4.6 (Gene Codes, Ann Arbor, MI, USA) and the Contig Assembly Programme (CAP; Huang 1992) implemented in BioEdit 7.0 (Hall 1999). All newly obtained unique sequences were submitted to GenBank under accession numbers JX281735–JX281748 (*cytb*), JX281749–JX281750 (*zfy*) and JX281751–JX281759 (*fgb7*). Sequences were aligned in BioEdit 7.0 (Hall 1999) either by eye (mtDNA sequences) or using ClustalW (Thompson *et al.* 1994) under default settings for gap penalties in nuclear sequences.

MtDNA cytb phylogeny was computed in PAUP* 4.10b (Sinauer Associates, Sunderland, MA, USA) using maximum parsimony (MP) and maximum likelihood (ML). Tree space was searched heuristically with a tree bisection-reconnection swapping algorithm on 100 random sequence additions. Reliability of branching pattern was assessed by bootstrapping using 1000 and 100 pseudoreplicates in MP and ML, respectively. In ML bootstrapping, only 10 random sequence additions were run to reduce computation time. The model of evolution used in ML analysis was the transversion-weighted model with gamma distributed evolutionary rates split into four rate classes (TVM + Γ ; Yang 1996), as suggested by the program Modeltest 3.7 (Posada & Crandall 1998). Phylogeny was further estimated using Bayesian inference in MrBayes 3.1.2 (Ronquist & Huelsenbeck 2003) under the most closely related, more complex model of evolution incorporated in MrBayes, the general time-reversible model with gamma distributed evolutionary rates (GTR + Γ; Tavaré 1986, Yang 1996). We used two independent simultaneous Metropolis-coupled MCMC runs of four chains running for 10⁶ generations, sampled every 100th generation and starting from random trees. The first 2500 sampled trees were discarded as burn-in. A 50% majority rule consensus tree was constructed from the remaining trees with posterior probabilities representing credibility estimates of topology. Sequence divergences were expressed as percentage pairwise Kimura two-parameter genetic distances (K2P; Kimura 1980) to allow comparison with other bat groups (Baker & Bradley 2006).

Nuclear zfy sequences were first described with regard to sequence polymorphism and characteristic differences between lineages. They were then compared using MP analysis with a heuristic search of 100 random sequence additions. Gaps were treated as fifth state to keep as much phylogenetic information as possible (Simmons & Ochoterena 2000). Nodal support was assessed through 1000× bootstrapping. ML and Bayesian trees were also computed under TrN (Tamura & Nei 1993) and GTR evolutionary models, respectively, as suggested by Modeltest 3.7. ML analysis of *zfy* was carried out in an identical fashion as MP analysis. Bayesian analysis of *zfy* was run as in the *cytb* assay.

Nuclear fgb7 sequences were analysed for sequence polymorphism and characteristic differences noted. Double peaks in otherwise clearly readable chromatograms were considered to represent heterozygous positions of different alleles, as the marker used is diploid. For phylogenetic analysis, sequences containing such double peaks had to be split into haplotypes, each having just one of the two bases present in diploid sequence. As several individuals showed more than one heterozygous position, we used PHASE 2.1 software (Stephens et al. 2001) under default settings to estimate haplotypes from these sequences. As in zfyanalysis, gaps were treated as the fifth-state character. A median-joining network was computed from all reconstructed haplotypes using the Network 4.6 program (Bandelt et al. 1999) to visualize phylogenetic relationships among the bats.

Morphological comparison

All specimens sequenced for inference of phylogenetic relationships were included in the morphological comparison. The type specimen of S. nigritellus [Natural History Museum, London, UK (BMNH 99.6.15.9), collected at Gambaga, Ghana; de Winton, 1899] was also included for taxonomic evaluation of small-sized Scotophilus bats. We used only one external measurement, forearm length (LAt), as this is the only traditionally examined dimension based on a bony body part and which is not biased, therefore, by tissue shrinkage caused by the fixation agent. Skulls were extracted from the voucher specimens and measured with mechanical callipers to the nearest 0.01 mm along the following 15 dimensions: greatest length of skull (LCr), condylobasal length (LCb), zvgomatic width (LaZ), width of interorbital constriction (LaI), rostrum width across infraorbital foramina (LaInf), neurocranium width (LaN), mastoidal width (LaM), height of neurocranium (ANc), largest horizontal diameter of tympanic bulla (LBT), width across upper canines at crowns (CC), width across third upper molars (M^3M^3) , length of upper tooth-row from front of canine to back of third molar (CM³), condylar length of mandible (LMd), height of coronoid process (ACo) and length of lower tooth-row from front of canine to back of third molar (CM₃).

For size comparison of the two *S. nigritellus* forms, individual dimensions were compared using the analysis of variance (ANOVA) on raw data. Additionally, six indices were computed as ratios of selected skull dimensions (ANc, LaN, LMd, CM³, LaInf, LaZ) against LCb and

used to compare relative size of skull proportions. The skulls were further compared using principal component analysis (PCA) to assess overall morphological difference between specimens of *S. nigritellus* and to reveal potential presence of distinct morphotypes. The PCA used the 15 original skull dimensions only; these variables being entered as raw data. Statistical analyses were performed using Statistica 6.0 software (StatSoft, Tulsa, OK, USA).

Results

Variation of mtDNA sequences

Twenty small Senegalese house bats tentatively identified as S. nigritellus were sequenced for the complete cytb mitochondrial gene [1140 base pairs (bp)]. These cytb sequences corresponded to seven unique haplotypes Sen1-Sen7 (Table 1). The position of these haplotypes was inferred within a phylogeny including additional specimens of S. nigritellus (haplotypes Mau1, Ben1) and S. leucogaster (haplotypes Sen8-10, Mau2, Ben2) from Senegal, Mauritania and Benin, and previously published Scotophilus sequences (Table 1). MP analysis recovered six most parsimonious trees (600 steps long), which differed in minute rearrangements of terminal nodes within well-supported clades (Fig. 2). ML analysis yielded two virtually identical trees (-lnL = 4326.16287) that agreed with the arrangement of the main clades in the MP trees (Fig. 2). Topology of the Bayesian consensus tree was basically identical to that of the MP and ML trees. Support for the clades and their position within phylogeny was high under all three methods [bootstrap >90%, posterior probability (pp) > 0.95], except for Bayesian support of the S. leucogas*ter* clade (pp = 0.88). Interestingly, the small-sized house bats tentatively identified as S. nigritellus clustered in two paraphyletic lineages. Yellow-bellied (YB) nigritellus specimens (haplotypes Sen1-Sen6) were placed as a crown lineage in sister relationship to the S. dinganii morphospecies clade from Southern and West Africa, including the westernmost part of Kenya. On the contrary, the white-bellied (WB) *nigritellus* specimens, all represented by haplotype Sen7, clustered at the base of the phylogenetic tree in sister relationship to the S. leucogaster clade. The small-sized bat from Benin (haplotype Ben1) and two haplotypes from Ghana previously identified as S. nigritellus clustered together with the Senegalese YB nigritellus specimens. The small-sized bat from Mauritania (haplotype Mau1) clustered with the Senegalese WB nigritellus specimens. Genetic divergence between the two lineages of West African small-sized bats ranged from 12.3 to 13.5%. Variation in YB nigritellus ranged from 0.2 to 0.5% within the Senegalese group only, and up to 3.2% when haplotypes from Ghana and Benin were included. The two WB nigritellus haplotypes differed from each other by 0.1%.

Fig. 2 Bayesian consensus tree based on cytb sequences (left) and MP tree based on *zfy* sequences (right) depicting phylogenetic position of small-sized Scotophilus of West Africa within a spectrum of congeneric species. MP and ML bootstrap values are given above, Bayesian posterior probabilities below the respective branches. In zfy tree, Bayesian nodal support is given for analysis with and without inclusion of indels. Branches depicted as dashed lines are for representative purposes only and their length does not reflect the amount of evolutionary change.

Most of the remaining taxa differed from each other, and from the two *nigritellus* lineages, by 5.1–13.6%. Lowest divergence values 2.6–2.8% were found between the sister lineages of WB *nigritellus* and *S. leucogaster*.

Variation of nuclear sequences

Partial zfy sequences were obtained from most of the males present in our set of specimens (Table 1). Sequences of the three forms, YB nigritellus, WB nigritellus and S. leucogaster, were each represented by one unique haplotype. These haplotypes were aligned with the comparative sequences of other Scotophilus to a block with a length of 844 bp. The zfy haplotypes of both nigritellus forms were different from published Scotophilus sequences (haplotypes zfyYB and zfyWB), while the S. leucogaster sequence was identical to the published sequence (sequences EU751018 and EU751019 were identical on the 844-bp fragment analysed). The three haplotypes differed by several characteristic insertions/deletions (indels): S. leucogaster differed from both nigritellus forms by a striking indel of 152 bp. Other unique indels included a 4-bp stretch in YB nigritellus and a 3-bp stretch in WB nigritellus that were not present in the other two forms. Nucleotide polymorphism was present at 12 positions of the alignment: WB nigritellus differed from YB nigritellus by 10 substitutions and from S. leucogaster by nine substitutions, and YB nigritellus differed from S. leucogaster by seven substitutions. The published sequences of S. dinganii morphospecies EU751002-EU751010 were reduced to only three unique haplotypes in the 844-bp alignment, represented by

sequences EU751002 (identical with EU751003), EU751004 (identical with EU751006-EU751010) and EU751005. Sequence EU751004, which also represents *S. nigritellus* from Ghana (EU751009), differed from the recovered haplotype of *S. nigritellus* (zfyYB) by just one 4bp indel.

In the final alignment, only four from 30 variable positions without consideration of gaps, and seven from 209 with gaps, were parsimony informative. MP analysis vielded one parsimonious tree (60 steps) with a rather shallow structure, except for the S. leucogaster branch, whose length was greatly inflated because of the characteristic 152-bp indel. Re-calculation without this alignment section produced two MP trees (31 steps) with the same arrangement and a visually more comprehensible structure with regard to inferred branch length. In contradiction to the mtDNA phylogeny, S. leucogaster clustered within a supported monophyletic clade together with the S. dinganii morphospecies and YB nigritellus, while its sister cytb lineage WB nigritellus was placed in paraphyly at the base of the tree (Fig. 2). ML and Bayesian analyses supported monophyly of S. dinganii morphospecies and YB nigritellus, but could not fully resolve the position of S. leucogaster. Nevertheless, the latter species and WB nigritellus were clearly not in sister relationship (Fig. S1).

Partial fgb7 sequences were successfully obtained from 4 to 6 specimens from each of the two *nigritellus* forms and from *S. leucogaster*. The final alignment was 449-bp long and included a characteristic 20-bp indel in YB *nigritellus*. A further 1-bp indel was shown to differentiate *S. leucogaster*

from both *nigritellus* forms. Without indels, 11 alignment positions were polymorphic, five containing unresolved characters indicating the presence of heterozygous alleles. These alleles were reconstructed using PHASE software. Several heterozygous positions were decomposed into haploid phases with 50% uncertainty; however, this was not a serious issue with regard to the purpose of the analysis. The 26 sequences of the final alignment corresponded to nine unique haplotypes. In the reconstructed median-joining network, these haplotypes clustered into three distinct groups corresponding to the previously identified mtDNA lineages of the three respective *Scotophilus* forms (Fig. 3). The haplotype representing all five WB *nigritellus* specimens and *S. leucogaster* differed by five nucleotide substitutions and one indel, while YB *nigritellus* differed from *S. leucogaster* by one nucleotide substitution and two indels.

Morphological comparison

Comparison of dimensions showed close size similarity in all the small-sized house bats examined (Table 2; Fig. 4). Detailed examination, however, revealed morphological differences between the two groups separated by genetic analysis. YB *nigritellus* specimens had slightly larger LAt

Fig. 3 Haplotype network calculated from fgb7 sequences. Size of nodes is proportional to frequency of particular haplotypes. Except for single haplotypes, frequency is given in the nodes. Variable positions are indicated above the branches.

Table	2	External	and	cranial	dimensions,	selected	indices	of	skull	dimensions	and	statistical	comparison	(ANOVA)	of	the	examined
specia	nei	n sets of t	the sr	nall-size	d West Afric	an Scotop	<i>hilus</i> bats	s. D	ata oi	n the type sp	ecim	en Scotophi	ilus nigritellus	de Wint	on,	1899	; are also
prese	nte	d, but the	ese we	ere not i	ncluded in AN	NOVA											

	YB nigritellus						nigritellus			Type nigritellus	ANOVA			
	N	М	min	max	SD	N	М	min	max	SD	BMNH 99.6.15.9.	d.f.	F	Ρ
LAt	10	44.43	42.6	46.6	1.520	10	42.07	40.6	43.2	0.817	44.4	18	18.70	***
LCr	10	16.60	15.86	17.03	0.322	10	16.21	15.92	16.54	0.234	16.62	18	9.74	*
LCb	11	15.63	15.07	16.13	0.369	10	15.38	15.12	15.68	0.213	15.63	19	3.51	
LaZ	9	12.01	11.53	12.49	0.296	8	11.31	10.98	11.44	0.151	12.21	15	36.62	***
Lal	11	4.18	3.98	4.43	0.139	10	4.46	4.36	4.55	0.062	4.38	19	32.80	***
LaInf	11	5.91	5.52	6.36	0.255	10	5.38	5.08	5.63	0.159	6.37	19	31.77	***
LaN	11	8.18	7.68	8.44	0.248	10	8.57	8.27	8.85	0.167	8.07	19	17.55	***
LaM	10	10.15	9.38	10.62	0.389	8	9.89	9.58	10.02	0.139	-	16	3.17	
ANc	10	6.83	6.31	7.14	0.299	10	6.25	5.94	6.48	0.167	6.72	18	28.79	***
LBT	11	3.49	3.29	3.76	0.154	10	3.50	3.27	3.74	0.151	-	19	20.56	***
CC	11	5.73	5.49	5.92	0.157	10	5.48	5.31	5.58	0.085	6.11	19	41.16	***
M^3M^3	11	7.62	7.44	7.88	0.149	10	7.23	7.02	7.41	0.125	8.08	19	23.03	***
CM ³	11	5.86	5.76	6.09	0.108	10	5.63	5.48	5.84	0.110	5.95	19	19.04	***
LMd	11	12.09	11.78	12.61	0.253	10	11.67	11.32	11.93	0.189	12.18	19	45.74	***
ACo	11	4.77	4.47	5.09	0.167	10	4.37	4.17	4.47	0.090	4.76	19	8.57	*
CM3	11	6.55	6.33	6.82	0.139	10	6.38	6.21	6.56	0.128	6.71	19	0.00	
ANc/LCb	10	0.436	0.397	0.462	0.020	10	0.406	0.384	0.424	0.011	0.430	18	16.60	**
LaN/LCb	11	0.523	0.479	0.553	0.022	10	0.557	0.546	0.573	0.010	0.516	19	19.65	***
LMd/LCb	11	0.774	0.754	0.792	0.013	10	0.758	0.743	0.770	0.008	0.779	19	10.31	**
CM ³ /LCb	11	0.375	0.364	0.386	0.008	10	0.366	0.355	0.372	0.005	0.381	19	9.01	*
LaInf/LCb	11	0.378	0.352	0.407	0.015	10	0.350	0.333	0.361	0.009	0.408	19	27.41	***
LaZ/LCb	9	0.767	0.747	0.782	0.012	8	0.735	0.724	0.755	0.010	0.781	15	36.13	***

P value indicated as significant on the level of 0.05, 0.01** or 0.001***

Paraphyly in small-sized West African house bats • P. Vallo et al.

Fig. 4 Bivariate plot of two basic skull dimensions of compared *Scotophilus* specimens including the holotype specimen of *Scotophilus nigritellus* de Winton, 1899. Specimens of *Scotophilus leucogaster* are included to show size distinction from the small-sized forms of *S. nigritellus*.

and skull length dimensions than WB *nigritellus*. Although dimension ranges for most skull measurements overlapped in these two groups, two width dimensions (LaZ, M^3M^3) and the height of the coronoid process (ACo) were clearly larger in YB *nigritellus* bats, with no overlap with WB *nigritellus*, while WB *nigritellus* specimens were larger in width of neurocranium (LaN). Thus, these groups differed in skull shape more markedly than in skull size. YB *nigritellus* specimens had an absolutely and relatively higher, but relatively much narrower, braincase; a relatively wider rostrum; and relatively longer jaws than WB *nigritellus* bats (see indices and ANOVA results in Table 2).

Specimens of the two haplotype groups, therefore, represented two distinct morphotypes of slightly different sizes but significantly different skull shapes. The clear difference between the two groups was best demonstrated by the PCA results based on all 15 skull dimensions (Fig. 5; PC1 = 56.53% of variance; PC2 = 9.99%), wherein the two groups are clearly separated; YB *nigritellus* (PC1 > 0.4) and WB *nigritellus* (PC1 < 0.0). The holotype specimen of *S. nigritellus* de Winton, 1899, which was included in all comparisons, consistently fell within variation ranges of the YB *nigritellus* specimens.

Discussion

Mitochondrial phylogeny

House bats have long been considered a group with confused intrageneric relationships and ambiguous delimitation of taxa, especially in sub-Saharan Africa (Hayman & Hill 1971; Robbins *et al.* 1985; Koopman 1994; Goodman *et al.* 2005, 2006; Simmons 2005; Jacobs *et al.* 2006; Trujillo *et al.* 2009; Vallo *et al.* 2011). To a large extent, this situation has been caused by the similar external

Fig. 5 Principal component analysis of skull dimensions of compared *Scotophilus nigritellus* specimens including the holotype specimen of *S. nigritellus* de Winton, 1899.

appearance of bats from populations throughout the continent. Pelage colouration has often been used for identification, but this trait has recently been shown to be as unreliable for species identification as morphological measurements, where considerable overlap exists among most taxa (Goodman et al. 2005; Jacobs et al. 2006; Trujillo et al. 2009; Vallo et al. 2011). Captured specimens, therefore, have been identified to species rather intuitively, as was the case for the small-sized bats identified as S. nigritellus in this study. Molecular phylogenetic comparison of two forms with different pelage colouration, however, indicated that, surprisingly, the white-bellied form was actually not closely related to the yellow-bellied form, the latter agreeing with the original description of S. nigritellus by de Winton (1899). The paraphyletic relationship between the two forms, inferred from cytb sequence analysis, clearly indicates that they represent different species. This conclusion is further supported by a deep sequence divergence of over 12%, as such values are generally considered interspecific in bats (Baker & Bradley 2006) and are also reported among other well-defined house bat species (Jacobs et al. 2006; Trujillo et al. 2009; Vallo et al. 2011; this study). On the other hand, the sister relationship of WB nigritellus to S. leucogaster and the rather low genetic divergence between them (2.6-2.8%) indicate that these two lineages could belong to the same species. Similar levels of divergence are usually considered as intraspecific variation in bats, including Scotophilus (Baker & Bradley 2006; Jacobs et al. 2006; Trujillo et al. 2009), and even in this study, similar values ranging around 3% were obtained between YB nigritellus from Senegal and Ghana. The size of S. leucogaster, however, which alone allows unambiguous discrimination between S. leucogaster and YB nigritellus (Fig. 4), tends to contradict the potential intraspecific relationship between the two sister lineages.

Conflicting nucDNA signal

Additional data from nuclear markers provided interesting information on the mutual position of the previously defined mtDNA lineages. Comparison of male-inherited zfy gene sequences unambiguously identified three distinct haplotypes that significantly differed from each other by characteristic indels and substitutions. WB nigritellus was placed in paraphyletic position to both S. leucogaster and YB nigritellus, supporting its evolutionary independence from both species. Interestingly, S. nigritellus from Ghana lacks the 4-bp indel present in its conspecifics from Senegal, and its sequence is identical to S. aff. dinganii from the same region. Not only does this point to a close evolutionary relationship between these two house bat species but, based on the mtDNA data, it also implies that S. leucogaster and WB nigritellus should have very similar or even identical zfy sequences, given the much reduced mtDNA sequence divergence in comparison with the divergence between YB nigritellus and S. aff. dinganii (around 6%). The phylogenetic pattern inferred from *zfy* thus strongly contrasts with that from cytb, with WB nigritellus placed in a different position, albeit still paraphyletic with respect to YB nigritellus.

Data from fgb7 indicate a similar conflicting pattern to cytb as for zfy, with WB nigritellus differing substantially from both YB nigritellus and S. leucogaster. Omission of both indels from the network further increases the evolutionary relatedness between YB nigritellus and S. leucogaster, while WB nigritellus remains in a distant position. This pattern actually corroborates the *zfy* phylogeny, where WB nigritellus was placed in a paraphyletic position to YB nigritellus and S. leucogaster. The close, and basically unresolved, evolutionary relationship between YB nigritellus and S. leucogaster may be explained by the lower mutation rate and larger coalescence time of nuclear genes in comparison with mtDNA, which further stresses the distant position of WB nigritellus. Regarding the magnitude of divergence, the five substitutions that represent the difference between WB nigritellus and the other two species largely correspond to interspecific difference between the fruit bat species E. gambianus and M. pusillus (6 substitutions), and E. gambianus and Epomops franqueti (Tomes, 1860) (eight substitutions) on a proportionally longer fragment of fgb7 (700 bp) reported by Nesi et al. (2011).

Introgression of mtDNA: a likely explanation

Taxonomic evaluation of sister lineages based on the percentage value of mtDNA genetic divergence can be unreliable as it depends on recognition of true phylogenetic relationships that may be obscured by, for example, transfer of DNA between unrelated lineages via hybridization (Moore 1995; Nichols 2001; Galtier *et al.* 2009). This, in turn, strongly biases determination of threshold values of interspecific variation. A commonly used example of the lower interspecific threshold value in bats is based on the sequence divergence between the European serotine bats Eptesicus serotinus and E. nilssonii (Mayer & von Helversen 2001). These sympatric species have been shown to differ by as little as 0.7-1.4% in the NADH dehydrogenase subunit 1 gene, which strongly overlaps with their intraspecific variation. Such values roughly correspond with the cytb divergence of 1.2% recently reported by Artyushin et al. (2009). Large morphological differences between the species were originally explained as a rapid phenotype change over short evolutionary time (Mayer & von Helversen 2001). Recently, a more plausible explanation has been put forward for the mtDNA pattern observed in serotine bats. Based on the inferred paraphyletic position of Asian E. nilssonii to the European population and distant position of Asian E. serotinus, Artyushin et al. (2009) suggested that current mtDNA structure in European serotine bats was caused by ancient interspecific hybridization followed by fixation of local E. nilssonii mtDNA in the genome of alien E. serotinus following colonization of Europe.

Low genetic divergence between the morphologically distinct sister mtDNA lineages of S. leucogaster and WB nigritellus could be explained in a similar manner to the original serotine bat hypothesis of Mayer & von Helversen (2001). Indeed, the hypothesis is even more plausible in this case given that genetic divergence in the house bats (2.6-2.8%) is twice that of the serotine bats, signifying roughly twice as much evolutionary time for phenotypic differentiation. In our study, comparative data from a distant population were available for just one species of the sister pair, S. leucogaster. Despite a distance of ca. 2000 km between the localities in Senegal and Mauritania and those in Ghana and Benin, comparable to the area included in the serotine bat study of Artyushin et al. (2009), we found only limited mtDNA sequence variation and were unable to produce any alternative explanation. A reasonable interpretation of the mtDNA pattern can be inferred, however, from comparison with the nuclear data available in our study. The conflicting mtDNA and nucDNA signals clearly deny close evolutionary relatedness between WB nigritellus and S. leucogaster and support the hypothesis of ancient introgression of mtDNA.

As there are no known data for WB *nigritellus* from West Africa, we can only speculate about the possible evolutionary event that led to the hypothesized hybridization. Both species live in sympatry, and current morphological and genetic data suggest the existence of reproductive barriers between them. Historically, the species may have come into contact following changes in their distribution ranges owing to, for example, habitat shifts resulting from climate change (Hewitt 2001). Prezygotic reproductive isolation, like size difference, may not have played a large role, as assumed from reports of European serotine bats or African fruit bats. Hybridization may have been further facilitated by karyotype compatibility, as both species bear the same chromosome number (2n = 36) and chromosome morphology (autosomal fundamental number NFa = 50) (Koubínová 2007).

Taxonomic implications

As mentioned earlier, the paraphyletic relationship between the yellow-bellied and white-bellied forms of tentatively identified S. nigritellus, inferred from cytb phylogeny and over 12% sequence divergence, indicates that these two forms actually represent separate species. Relationships inferred from both nuclear markers also support this conclusion. Morphologic comparison, which clearly indicates two distinct morphogroups of significantly different size and skull shape, provides yet further evidence for the specific distinctness of the two small-sized house bat forms. Additionally, the type specimen of S. nigritellus from Ghana was grouped within the YB nigritellus specimen morphogroup. This morphological similarity, as well as the molecular proximity of Senegalese specimens to those from Benin and Ghana, which can be regarded as almost topotypic, confirms the assignation of the yellowbellied form to S. nigritellus de Winton 1899, beyond doubt. On the other hand, the taxonomic affiliation of the white-bellied form remains rather obscure.

Taxonomy of the genus Scotophilus has long been confused and controversial (e.g. Hayman & Hill 1971; Hill 1980; Robbins et al. 1985; Koopman 1994; Jacobs et al. 2006). Aside from the large S. nigrita (Schreber, 1774), African populations previously described under various names were synonymized under S. borbonicus (Geoffroy, 1803) in the first revision of the genus by Dobson (1878). Availability of this name for the African taxa was later advocated by Hill (1980), amongst others; however, this name is currently considered unavailable for all African house bats because of the unclear origin of the type specimen (S. Goodman, pers. comm.). Several other names have been suggested for African small-sized house bat populations at the lower range of the size spectrum (forearm 42-50 mm), which have been variously synonymized (see Robbins et al. 1985). In the last taxonomic revision of Scotophilus by Robbins et al. (1985), all populations of small-sized house bats were included into S. viridis (Peters, 1852), and the West African form S. nigritellus de Winton, 1899; was included as a junior synonym naming the respective West African populations as a subspecies. Only recently, a molecular phylogenetic analysis by Trujillo et al. (2009) revealed that the small-sized West African

S. viridis actually represents an evolutionary lineage distinct from the Southern African S. *viridis* s. str., and should thus be recognized as a separate species, *S. nigritellus* de Winton, 1899.

Given the synonymy of S. viridis s.l. by Robbins et al. (1985), that is, including nigritellus, three other names are available for the white-bellied form S. aff. nigritellus: S. altilis Allen, 1914, described from the Blue Nile Valley in SE Sudan; and S. murinoflavus (von Heuglin, 1861) and S. flavigaster (von Heuglin, 1861) described from Eritrea. The status of the latter two species is currently obscure because of a lack of information on type specimens. The original descriptions, meanwhile, do not correspond with the white-bellied S. aff. nigritellus in pelage colouration or size. Rather, these two species conform to the East African S. colias (Thomas, 1904), as we discussed elsewhere (Vallo et al. 2011). The remaining name, S. altilis, applies to populations of the East African Sahel and conforms in pelage colouration to the white-bellied S. aff. nigritellus rather than to S. nigritellus s. str.. Unfortunately, as the type specimen of S. altilis was unavailable to us, we were unable to provide a definitive conclusion on taxonomic affiliation of the West African white-bellied small-sized house bat to this name. On the other hand, there appear to be some size differences between the West African (aff. nigritellus) and East African (altilis) populations, for example, forearm lengths of ca. 42 and 46 mm, respectively, which cannot be explained by phenotypic variation over large geographical distance (over 5000 km) without additional morphological and genetic information. A new name may still be needed for this form, therefore, which would raise the number of African Scotophilus species to twelve.

Acknowledgements

We thank Adam Konečný, Josef Bryja and other colleagues from the IVB ASCR, v.v.i., for their assistance during field work in Senegal. Field work in the NKNP and collecting of bat specimens was approved and supervised by the Direction des Parcs Nationaux du Sénégal, Dakar, and we thank the director Col. Mame Balla Gueve for his kind support, and Lt. Cheikh Ahmed Djigo for help in the field. We further thank Louise Tomsett (BMNH, London, UK) for providing access to the type specimen of S. nigritellus. We also thank Victor van Cakenberghe (University of Antwerp, Antwerpen, Belgium) for discussion on taxonomy of Scotophilus and comments to the manuscript, and two anonymous reviewers for suggestions on improvements of language and clarity of the manuscript. The study was supported by grants of the Czech Science Foundation (## 206/09/P624, 206/09/0888) and the Ministry of Culture of the Czech Republic (# DKRVO 00023272).

References

- Arbonnier, M. (2002). Arbres, Arbustes et Lianes des Zones Sèches d'Afrique de l'Ouest, 2nd edn. Paris: CIRAD, MNHN, IUCN. 576 pp.
- Artyushin, I. V., Bannikova, A. A., Lebedev, V. S. & Kruskop, S. V. (2009). Mitochondrial DNA relationships among North Palaearctic Eptesicus (Vespertilionidae, Chiroptera) and past hybridization between Common Serotine and Northern Bat. *Zootaxa*, 2262, 40–52.
- Avise, J. C. (2000). Phylogeography: The History and Formation of Species. Cambridge, MA: Harvard University Press. 447 pp.
- Baker, R. J. & Bradley, R. D. (2006). Speciation in mammals and the genetic species concept. *Journal of Mammalogy*, 87, 643–662.
- Ballard, J. W. O. & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. *Molecular Ecology*, 13, 729–744.
- Bandelt, H. J., Forster, P. & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. *Molecular Biology and Evolution*, 16, 37–48.
- Berthier, P., Excoffier, L. & Ruedi, M. (2006). Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species *Myotis myotis* and *Myotis blythii*. Proceedings of the Royal Society B: Biological Sciences, 273, 3101–3109.
- Cathey, J. C., Bickham, J. W. & Patton, J. C. (1998). Introgressive hybridization and nonconcordant evolutionary history of maternal and paternal lineages in North American deer. *Evolution*, 52, 1224–1229.
- Currat, M., Ruedi, M., Petit, R. J. & Excoffier, L. (2008). The hidden side of invasions: massive introgression by local genes. *Evolution*, 62, 1908–1920.
- Dobson, G. E. (1878). Catalogue of the Chiroptera in the Collection of the British Museum. London: Trustees of the British Museum (Natural history), 567 pp.
- Funk, D. J. & Omland, K. E. (2003). Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. *Annual Review of Ecology*, *Evolution and Systematics*, 34, 397–423.
- Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. *Molecular Ecology*, 18, 4541–4550.
- Goodman, S. M., Jenkins, R. K. B. & Ratrimomanarivo, F. H. (2005). A review of the genus *Scotophilus* (Mammalia, Chiroptera, Vespertilionidae) on Madagascar, with the description of a new species. *Zoosystema*, 27, 867–882.
- Goodman, S. M., Ratrimomanarivo, F. H. & Randrianandrianina, F. H. (2006). A new species of *Scotophilus* (Chiroptera: Vespertilionidae) from western Madagascar. *Acta Chiropterologica*, 8, 21–37.
- Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
- Hayman, R. W. & Hill, J. E. (1971). Part 2. Order Chiroptera. In J. Meester & H. W. Setzer (Eds) *The Mammals of Africa: An Identification Manual.* pp. 1–73. Washington, DC: Smithsonian Institution Press.
- von Heuglin, M. T. (1861). Beiträge zur Fauna der Säughetiere N.O.-Afrika's. Nova Acta Academia Caesarae Leopoldino-Carolinae Halle, 29, 1–18.

- Hewitt, G. M. (2001). Speciation, hybrid zones and phylogeography – or seeing genes in space and time. *Molecular Ecology*, 10, 537–549.
- Hill, J. E. (1980). The status of Vespertilio borbonicus E. Geoffroy, 1803 (Chiroptera: Vespertilionidae). Zoologische Mededelingen, 55, 287–295.
- Horáček, I., Fejfar, O. & Hulva, P. (2006). A new genus of vespertilionid bat from Early Miocene of Jebel Zelten, Libya, with comments on *Scotophilus* and early history of vespertilionid bats. *Lynx*, n. s., 37, 131–150.
- Huang, X. (1992). A contig assembly program based on sensitive detection of fragment overlaps. *Genomics*, 14, 18–25.
- Jacobs, D. S., Eick, G. N., Schoeman, M. C. & Mathee, C. A. (2006). Cryptic species in an insectivorous bat, *Scotophilus dinganii*. *Journal of Mammalogy*, 87, 161–170.
- Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16, 111–120.
- Koopman, K. F. (1994). Chiroptera: systematics. In J. Niethammer, H. Schliemann & D. Stark (Eds) Handbook of Zoology. Vol. VIII Mammalia, Part 60. (pp. 1–217). Walter de Gruyter, Berlin, New York.
- Koubínová, D. (2007). Karyotypes of some small mammal species of West Africa. MSc Thesis. Charles University, Prague. in Czech
- Madsen, J. E. & Sambou, B. (1998). Notes on composition and dynamics of woody vegetation in the Niokolo Koba National Park, Senegal. In A. T. Bâ, J. E. Madsen & B. Sambou (Eds) Atelier Sur Flore, Végétation et Biodiversité au Sabel (pp. 235– 244). Aarhus: Aarhus University Press, 310 pp.
- Matthee, C. A., Eick, G., Willows-Munro, S., Montgelard, C., Pardini, A. T. & Robinson, T. J. (2007). Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. *Molecular Phylogenetics and Evolution*, 42, 827–837.
- Mayer, F. & von Helversen, O. (2001). Cryptic diversity in European bats. Proceedings of the Royal Society B: Biological Sciences, 268, 1825–1832.
- McGuire, J. A., Linkem, C. W., Koo, M. S., Hutchison, D. W., Lappin, A. K., Orange, D. I., Lemos-Espinal, J., Riddle, B. R. & Jaeger, J. R. (2007). Mitochondrial introgression and incomplete lineage sorting through space and time: phylogenetics of crotaphytid lizards. *Evolution*, 61, 2879–2897.
- Menu, H. (1987). Morphotypes dentaires actuels et fossiles des chiroptères vespertilioninés. 2eme partie: implications systematiques et phylogeniques. *Palaeovertebrata*, 17, 77–150.
- Moore, W. S. (1995). Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. *Evolution*, 49, 718–726.
- Moritz, C., Dowling, T. E. & Brown, W. M. (1987). Evolution of animal mitochondrial DNA: relevance for population biology and systematics. *Annual Review of Ecology and Systematics*, 18, 269–292.
- Nesi, N., Nakouné, E., Cruaud, C. & Hassanin, A. (2011). DNA barcoding of African fruit bats (Mammalia, Pteropodidae). The mitochondrial genome does not provide a reliable discrimination between *Epomophorus gambianus* and *Micropteropus pusillus*. *Comptes Rendus Biologies*, 334, 544–554.

Paraphyly in small-sized West African house bats • P. Vallo et al.

- Nichols, R. (2001). Gene trees and species trees are not the same. *Trends in Ecology and Evolution*, 16, 358–364.
- Petit, R. J. & Excoffier, L. (2009). Gene flow and species delimitation. *Trends in Ecology and Evolution*, 24, 386–393.
- Posada, D. & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. *Bioinformatics*, 14, 817–818.
- Prychitko, T. M. & Moore, W. S. (2000). Comparative evolution of the mitochondrial cytochrome *b* gene and nuclear βfibrinogen intron 7 in woodpeckers. *Molecular Biology and Evolution*, 17, 1101–1111.
- Robbins, C. B., De Vree, F. & Van Cakenberghe, V. (1985). A systematic revision of the African bat genus Scotophilus (Vespertilionidae). Annales de Museé Royal de l'Afrique Centrale, Sciences Zoologiques, 246, 51–84.
- Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19, 1572–1574.
- Sakai, T., Kikkawa, Y., Tsuchiya, K., Harada, M., Kanoe, M., Yoshiyuki, M. & Yonekawa, H. (2003). Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome *b* gene. *Genes and Genetic Systems*, 78, 179–189.
- Seddon, J. M., Santucci, F., Reeve, N. J. & Hewitt, G. M. (2001). DNA footprints of European hedgehogs, *Erinaceus europaeus* and *E. concolor*: Pleistocene refugia, postglacial expansion and colonization routes. *Molecular Ecology*, 10, 2187–2198.
- Simmons, N. (2005). Order Chiroptera. In D. E. Wilson & D. M. Reeder (Eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn (pp. 312–529). Baltimore, MD: Johns Hopkins University Press, 2142 pp.
- Simmons, M. P. & Ochoterena, H. (2000). Gaps as characters in sequence-based phylogenetic analyses. *Systematic Biology*, 49, 369–381.
- Stephens, M., Smith, N. J. & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. *American Journal of Human Genetics*, 68, 978–989.
- Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution*, 10, 512–526.
- Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In R. M. Miura (Ed.) Some

Mathematical Questions in Biology—DNA Sequence Analysis. Lectures on mathematics in the life sciences (pp. 57–86). Providence, Rhode Island: American Mathematical Society.

- Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleid Acids Research*, 22, 4673–4680.
- Trujillo, R. G., Patton, J. C., Schlitter, D. A. & Bickham, J. W. (2009). Molecular phylogenetics of the bat genus *Scotophilus* (Chiroptera: Vespertilionidae): perspectives from paternally and maternally inherited genomes. *Journal of Mammalogy*, 90, 548–560.
- Vallo, P., Benda, P. & Reiter, A. (2011). Yellow-bellied or whitebellied? Identity of Arabian house bats (Vespertilionidae: Scotophilus) revealed from mitochondrial DNA and morphology *African Zoology*, 46, 350–361.
- de Winton, W. E. (1899). On mammals collected by Lieut.-Colonel W. Giffard in the Northern Territory of the Gold Coast. *Annals* and Magazine of Natural History, 7, 353–359.
- Wirtz, P. (1999). Mother species-father species: unidirectional hybridization in animals with female choice. *Animal Behaviour*, 58, 1–12.
- Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analysis. *Trends in Ecology and Evolution*, 11, 367– 372.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Phylogenetic trees of *Scotophilus* based on the *zfy* sequences without indels recovered under maximum likelihood (A) and Bayesian (B) methods. Nodal support is given at the respective nodes.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.