Notes on the distribution and taxonomic status of *Gobio gobio* from the Morača River basin (Montenegro)

Radek ŠANDA¹, Věra LUSKOVÁ² and Jasna VUKIĆ³

¹ National Museum, Department of Zoology, Václavské náměstí 68, 115 79 Praha, Czech Republic; e-mail: rsanda@seznam.cz
² Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 603 65 Brno, Czech Republic; e-mail: luskova@ivb.cz
³ Department of Ecology, Charles University, Viničná 7, 128 44 Praha, Czech Republic

Received 30 November 2004; Accepted 20 March 2005

Abstract. The occurrence of common gudgeon in the River Morača drainage of southern Montenegro was investigated. Low numbers of specimens were recorded in four out of five localities investigated on the Zeta River and at a single locality on the lower part of the River Morača. Allozyme analysis revealed that the specimens examined belong to the species *Gobio gobio* (Linnaeus, 1758). The lower number of lateral line scales in common gudgeon from the Ohrid-Drim-Skadar system, as compared with other European populations, probably indicates clinal variability. The results also demonstrate that the subspecies *Gobio gobio ohridanus* Karaman, 1924 is not a valid taxon.

Key words: common gudgeon, distribution, taxonomy, Adriatic Sea drainage, Zeta River

Introduction

The common gudgeon, *Gobio gobio* (Linnaeus, 1758), is a species widely distributed in Europe. A number of subspecies and lower categories of *Gobio gobio* have been described (Köttel 1997, Bănerescu et al. 1999). Three subspecies have been described from the hydrological system Ohrid-Drim-Skadar (Adriatic Sea drainage) in the western part of the Balkan Peninsula: *Gobio gobio ohridanus* Karaman, 1924 from Ohrid Lake, *Gobio gobio skadarensis* Karaman, 1936 from Skadar Lake, and *Gobio gobio albanicus* Oliva, 1961 from the River Kir in Albania. Grupače & Dimovski (1975) and Šorić & Ilić (1988) concluded that all populations from the Ohrid-Drim-Skadar system belong to the subspecies *Gobio gobio ohridanus*. Köttel (1997) included this subspecies in the synonymy of the species *Gobio gobio* (Linnaeus, 1758). However, Bănerescu et al. (1999) recognised *Gobio gobio ohridanus* as one of five valid European subspecies.

G. gobio in Montenegro inhabits both Skadar Lake (Ivanović 1973) and its tributary, the Morača River drainage (Marić 1995). Nevertheless, the details of the distribution of this species have been inadequate. The River Morača is the main tributary of Skadar Lake, which is the largest lake of the Balkan Peninsula, with an area varying between 370 and 600 km² (Béton 1981). Lakes Skadar and Ohrid and the River Drim, compose the largest river system (Fig. 1) in the western Balkan zoogeographic region (Bănerescu 1992), and drains in to the Adriatic Sea basin. The Morača River is 99 km long but has an area of only 390 ha. The spring of the River Morača lies at an altitude of 975 m a.s.l., while its mouth is at only 6 m a.s.l. It is a typical karstic Mediterranean river, flowing through limestone and dolomite bedrock. Discharge fluctuates greatly during the year. Its mean value in Podgorica is
163 m3 s$^{-1}$ (Drečun et al. 1985). The River Morača has several tributaries, of which rivers Zeta, Mrtvica and Cijevna are the most important (Fig. 2). These three rivers are permanent, whereas other inflows often dry out during summer. The largest tributary is the River Zeta (about 50 km long) with a mean discharge in its mouth of 74 m3 s$^{-1}$ (Martinović – Vitanović & Kalafatić 1995).

The aim of this study is to present the up-to-date information on the distribution of $G.\ gobio$ in the Morača River system and to discuss the taxonomic status of this population.

Materials and Methods

Fishes were caught at 20 localities in the Morača River system (Fig. 2) by electrofishing and, at some places, also by hand nets in the summer 2002 and 2003. Three specimens of $G.\ gobio$
Table 1. Description of localities with occurrence of *Gobio gobio*. The locality numbers correspond to numbers in Fig.2. Sampling was conducted in 2002. * At locality 3, additional data about species composition were obtained in 2003. Species found in 2003 are underlined and number of specimens is not shown. ** At locality 5, only one juvenile *Gobio gobio* was found in a pit, which remained on the bank after gravel mining. Most of the other species were found in the river. Due to different habitat, number of specimens is not shown.

<table>
<thead>
<tr>
<th>Locality (no. of captured G. gobio is in parentheses)</th>
<th>Coordinates</th>
<th>Width (m)</th>
<th>Depth (m)</th>
<th>Velocity ms⁻¹</th>
<th>Substratum</th>
<th>Vegetation</th>
<th>Species composition (no. of specimens is in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. mouth of the river Sušica into the Zeta River (1)</td>
<td>N 42°30'50.9'' E 19°10'22''</td>
<td>8; up to 1.8</td>
<td>stagnant</td>
<td>silt with gravel and small stones</td>
<td>scattered macrophytes, floating leaves of Nymphaea</td>
<td>Cobitis ohridana (3), Pomatoschistus sp. (3), Phoxinus phoxinus (2), Leuciscus cephalus (4), Barbus rebeli (6)</td>
<td></td>
</tr>
<tr>
<td>5. River Morača in village Golubović (1)**</td>
<td>N 42°18'55.3'' E 19°12'03.5''</td>
<td>40-150; up to 3, pools on the bank</td>
<td>0.1 - 0.6</td>
<td>gravel covered by fine sediment</td>
<td>dense filamentous algae</td>
<td>Barbatula zetensis, Cobitis ohridana, Pomatoschistus sp., Knipowitschia croatica, Barbus rebeli, Phoxinus phoxinus, Leuciscus cephalus, Cyprinus carpio, Salaria fluviatilis, Lethenteron zanandreai</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2. A detailed map of the Morača River drainage. Full circles indicate sampled localities. The sites with occurrence of *Gobio gobio* are numbered. The numbers correspond to numbers in Table 1.

Table 2. Genetic variability at 20 loci in population of the *Gobio gobio* from the River Zeta (Montenegro) and rivulet Haná (Czech Republic) (standard errors are given in parentheses)

<table>
<thead>
<tr>
<th>Locality</th>
<th>% of polymorphic loci P</th>
<th>Mean aleles/locus A.D.</th>
<th>Mean expected H_e</th>
<th>Heterozygosity observed H_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Zeta</td>
<td>10</td>
<td>1.03 (0.18)</td>
<td>0.028 (0.085)</td>
<td>0.033 (0.103)</td>
</tr>
<tr>
<td>Rivulet Haná</td>
<td>23.5</td>
<td>1.50 (0.20)</td>
<td>0.121 (0.052)</td>
<td>0.131 (0.056)</td>
</tr>
</tbody>
</table>
from the Zeta River were examined for allozyme patterns by electrophoresis. The classical method (Lusková et al. 1997, Šlechtová et al. 2000) on starch gels using liver and muscle tissue homogenates was used. 14 protein systems by specific enzyme staining were detected. Basic statistics were performed using Genetix software. The values obtained for the population of Gobio gobio from the rivulet Haná (Danube basin, Czech Republic) were used for comparison.

Results

G. gobio occurrence was recorded at five of the 20 localities investigated within the Morača River system (Fig.1, No. 1 to 5). This species was not found in the rivers Cijevna, Mrtvica and Sitnica. In the River Morača, it was found at only one locality in the lower part of the river. The single specimen, in this case juvenile, was caught in a pit on the bank formed by gravel mining. Gudgeon occurred mainly in the Zeta River where the species was caught at four out of five sites studied, but still in very low numbers. Gudgeon represented from 2 to 8.5% of all fishes caught at these localities. In total, 15 specimens were caught in this river (see Table 1), with total lengths ranging from 48 to 145 mm. Of 12 specimens, in which the number of scales on the lateral line was counted, seven had 40 and five had 39 scales (mean 39.58). The main characteristics of the localities where gudgeon occurred, together with the fish species composition are presented in Table 1.

By specific staining in 14 enzyme protein systems, 20 loci were found. The following 18 loci were monomorphic: LDH-A* (100); LDH- B* (100); sAAT* (100); mAAT-1* (100); mAAT-2* (100); sMDH-A* (100); sMDH-B* (100); mMDH* (100); PGM-1* (100); mIDHP* (100); GPI-A* (100); AK* (100); 6PGDH* (100); ADH* (100); MPI* (100); sMDHP-1* (075); GPI-2* (175); CK* (120). Heterozygosity was found in two individuals, one having G3PDH-2* enzyme with alleles 080 and 100, and the other SOD* alleles 072 and 100. Estimates of observed (H_o) and expected heterozygosity (H_e), percentages of polymorphic loci (P) and allele numbers per locus (A.D.) at samples from the River Zeta in comparison to samples from the rivulet Haná (Czech Republic, Morava River basin) are given in the Table 2. All alleles found in individuals from the River Zeta are also present in Gobio gobio from the Czech Republic and Slovakia (Šlechtová et al. 2005).

Discussion

One of the main factors influencing the distribution of gudgeon in the Morača River drainage is most probably the much more diversified substratum, providing more suitable microhabitats for this species in the Zeta River in comparison with the Morača River and its other inflows. In the Zeta, the bed was very variable, even on a local scale, and was composed of stones, gravel of different sizes, and sand. Aquatic macrophytes were abundant and submerged trunks and branches of trees, as well as other wooden debris, were plentiful; banks were indented and undercut. In contrast, the bottom of the Morača was uniform, with small stones and pebbles. Finer sediment and vegetation, composed solely of filamentous algae, were found only in the lowest part of the river below Podgorica.

Several subspecies of Gobio gobio have been described from the Ohrid-Drim-Skadar system: Gobio gobio ohridanus Karaman, 1924 from Ohrid Lake, Gobio gobio skadarensis Karaman, 1936 from Skadar Lake, and Gobio gobio albanicus Oliva, 1961 from the River Kir in Albania. However, comparative morphological and meristic analyses have shown that
all gudgeon populations within the Ohrid-Drim-Skadar system are conspecific (Grupčević & Dimovski 1975, Šorić & Ilić 1988). The small differences between populations within the system do not exceed the range of interpopulation variability and could be caused by different ecological conditions at each locality (Šorić 1990). According to Grupčević & Dimovski (1975), Šorić & Ilić (1988), and Bănărescu et al. (1999) the Ohrid-Drim-Skadar system is inhabited by Gobio gobio ohridanus Karaman, 1924. In contrast, Vinciguerra (1933) described the specimens from Skadar Lake as identical to the nominotypical form of Gobio gobio. Kotteleat (1997) too did not recognize Gobio gobio ohridanus to be a valid taxon. The results of our allozyme analyses support the opinion of Kotteleat (1997) that gudgeon from the system Ohrid-Drim-Skadar is not a valid taxon and that the name Gobio gobio ohridanus is a junior synonym of Gobio gobio gobio (Linnaeus, 1758).

The main difference between gudgeon populations from the Ohrid-Drim-Skadar system and other European sites is the lower number of scales in the lateral line, varying from 33 to 43, with an average of 38–39 (Karaman 1924, 1936, Olića 1950, 1961, Ivanović 1973, Grupčević & Dimovski 1975, Šorić & Ilić 1988). The number of scales on the lateral line of gudgeon from Skadar Lake ranged from 33 to 41 (mean 38.5) (Ivanović 1973). The number of scales on the lateral line in specimens from the Morača River drainage now studied falls in the range reported for gudgeon populations from the Ohrid-Drim-Skadar system, although the mean number is slightly higher (39.58).

Lower number of scales in the lateral line of gudgeon from the Ohrid-Drim-Skadar system in comparison with other European sites (average usually more than 40; Bănărescu et al. 1999) could be an effect of clinal variability, the southern populations of widespread species having fewer lateral line scales (Holčík & Jedlička 1994). Thus, the number of lateral line scales could not be used as a taxonomic criterion in variable species with continuous distribution such is the case of common gudgeon.

Gudgeon probably reached the Ohrid-Drim-Skadar system from the Danube system by river capture of those two systems in the area of Kosovo (Karaman 1971). River capture is known to be an important process for dispersion of freshwater fishes (Bănărescu 1989, Economidis & Bănărescu 1991, Durand et al. 1999, Tsigenopoulos & Berrebi 2000). A Dalmatian route of dispersion (Economidis & Nalbant 1996) is not probable, because Gobio gobio does not occur in rivers of the Dalmatian coast (Mrakovčić et al. 1995).

Recent distribution of common gudgeon in the eastern and southern Adriatic Sea drainage is not restricted only to the Ohrid-Drim-Skadar system, as has been stated in the latest revision of Bănărescu et al. (1999). This species is distributed more widely in the whole Albanian ichthyogeographic district (sensu Bianco 1990). It has also been reported in other Albanian rivers, the Mat (Rakaj 1995), Skumbini (Cake & Mihò 1999) and Vjose (Ahnelt & Elvira 1991) and the occurrence of G. gobio in these rivers was confirmed in summer 2004 (Sandar, unpublished data). Taxonomic status of Albanian populations and their relationships to populations from the Ohrid-Drim-Skadar are under investigation at the present time.

Acknowledgement

We are thankful to all who helped us during the fieldwork, especially to Lubomír Píálek. Our thanks are due to Peter J. Miller for his constructive comments on the manuscript. This work was supported by the BP Conservation Programme (project Survey of Endangered Fish Species of the Morača River System), Czech

IVANOVIĆ B. M. 1973: Ichtiofauna of Skadar Lake. *Institution for biological and medical research in Montenegro, Biological Station, Podgorica*, 146 pp.

